P(ai)^3
题目¶
Pai-ai-ai… My Paillier scheme seems to be broken and I stored my favourite flag in it. Please help me get it back, will you? Who could have guessed this would ever happen? … Me… I- I wrote it… yeah.
nc cha.hackpack.club 10997 # or 20997
paiaiai.py
#!/usr/bin/env python3
#
# Polymero
#
# Imports
from Crypto.Util.number import getPrime, inverse
from secrets import randbelow
# Local imports
with open("flag.txt",'rb') as f:
FLAG = f.read().decode()
f.close()
# Just for you sanity
assert len(FLAG) > 64
MENU = r"""|
| MENU:
| [E]ncrypt
| [D]ecrypt
| [Q]uit
|"""
class Paiaiai:
""" My first Paillier implementation! So proud of it. ^ w ^ """
def __init__(self):
# Key generation
p, q = [getPrime(512) for _ in range(2)]
n = p * q
# Public key
self.pub = {
'n' : n,
'gp' : pow(randbelow(n**2), p, n**2),
'gq' : pow(randbelow(n**2), q, n**2)
}
# Private key
self.priv = {
'la' : (p - 1)*(q - 1),
'mu' : inverse((pow(self.pub['gp'] * self.pub['gq'], (p-1)*(q-1), n**2) - 1) // n, n)
}
def encrypt(self, m: str):
m_int = int.from_bytes(m.encode(), 'big')
g = pow([self.pub['gp'],self.pub['gq']][randbelow(2)], m_int, self.pub['n']**2)
r = pow(randbelow(self.pub['n']), self.pub['n'], self.pub['n']**2)
return (g * r) % self.pub['n']**2
def decrypt(self, c: int):
cl = (pow(c, self.priv['la'], self.pub['n']**2) - 1) // self.pub['n']
return (cl * self.priv['mu']) % self.pub['n']
pai = Paiaiai()
while True:
try:
print(MENU)
choice = input("| >>> ").lower().strip()
if choice == 'e':
print("|\n| ENCRYPT:")
print("| [F]lag")
print("| [M]essage")
subchoice = input("|\n| >>> ").lower().strip()
if subchoice == 'f':
enc_flag = pai.encrypt(FLAG)
print("|\n| FLAG:", enc_flag)
elif subchoice == 'm':
msg = input("|\n| MSG: str\n| > ")
cip = pai.encrypt(msg)
print("|\n| CIP:", cip)
elif choice == 'd':
cip = input("|\n| CIP: int\n| > ")
msg = pai.decrypt(int(cip))
print("|\n| MSG:", msg)
elif choice == 'q':
print("|\n| Bai ~ \n|")
break
else:
print("|\n| Trai again ~ \n|")
except (KeyboardInterrupt, EOFError):
print("\n|\n| Bai ~ \n|")
break
except:
print("|\n| Aiaiai ~ \n|")
解题思路¶
-
server
同时提供了加密和解密的功能,但是解密结果显然是不对的 (╥ω╥)-
如果我们加密
test
并将得到的密文交给服务器解密,那么会收到一串乱码(以下结果经过long_to_bytes
处理)b"6\xa2\x15\x816\x12'\x8f\xdc[v\xb6\xe4]2\xfc\xfc\x13_\xc3\xe3\xc7A\xddF:f\x1d\xd4\xe8A\x92`V\xf8\xfe)4\xb1DS\xcc\xe7\xf6&\x93\x8b\xee()/7\xd4\xb9=`\xc80\x95\xb5\x00\xc1h\x1f\xc5\xab\xb7\x9b\x03\x8c\xbd[\xd8\xf8\x81\x8ek\x00\xd0\xe0v\x03l\xfa\x872h\xd0.C\xa1D\xa8\xc8\xc7a\xe5\xd5_\xd0\x91\xe8\x8b\xeb\xb8\x17Zd\xb8\xe7j\x14\xc6^\xdd\xa1\x80\xb4kT$j\xc9\xe6e`\x8e\x00"
-
-
分析
paiaiai.py
中Paillier
的实现Paiaiai
Paiaiai¶
Paiaiai
加解密过程与原Paillier
算法基本一致,但修改了公私钥的生成方式- 公钥为 \((n,g_p,g_q)\)
- 私钥为 \((\lambda, \mu)\),其中 \(\lambda=(p-1)(q-1),\mu=(L((g_p\times g_q)^\lambda\ mod\ n^2))^{-1}(mod\ n)\)
加密¶
- 随机选择 \(g_p\) 和 \(g_q\) 作为 \(g\)
- 两种可能的密文
- \(c_p=g_p^m\cdot r^n\ mod\ n^2\)
- \(c_q=g_q^m\cdot r^n\ mod\ n^2\)
解密¶
-
\(D(c)=L(c^\lambda\ mod\ n^2)\cdot\mu\) \(=\frac{L(c^\lambda\ mod\ n^2)}{L((g_p\times g_q)^\lambda\ mod\ n^2)}\ mod\ n\)
\(\because \lambda=(p-1)(q-1)=\varphi(n)\)
\(\therefore g^\lambda\equiv 1(mod\ n),g^\lambda(mod\, n^2)\equiv 1(mod\, n)\)
\(\therefore g^\lambda(mod\, n^2)=nk_g+1,k_g<n\)
\(\therefore L(g^\lambda(mod\, n^2))=k_g\)
设 \(L(g_p^\lambda(mod\ n^2))=k_p,L(g_q^\lambda(mod\ n^2))=k_q\)
\(\therefore L(c_p^{\lambda}\, mod\, n^2)=mk_p,L(c_q^{\lambda}\, mod\, n^2)=mk_q\)
\(\because\) \(\begin{equation} \begin{split} (g_p\times g_q)^\lambda\ mod\ n^2 & =(nk_p+1)(nk_q+1) \\ & = n^2k_pk_q+nk_p+nk_q+1 \\ & \equiv nk_p+nk_q+1(mod\ n^2) \end{split} \end{equation}\)
\(\therefore L((g_p\times g_q)^\lambda\ mod\ n^2)=k_p+k_q\)
\(\therefore m(k_p+k_q)=L((c_p\times c_q)^\lambda mod\ n^2)\)
\(\therefore m=D(c_p)+D(c_q)=\frac{mk_p}{k_p+k_q}+\frac{mk_q}{k_p+k_q}=\frac{m(k_p+k_q)}{k_p+k_q}=D(c_p\times c_q)(mod\ n)\)
-
虽然 \(n\) 是
Paillier
公钥的一部分,但Paiaiai
没有提供获取接口,因而将 \(D(c_p)+D(c_q)\) 根据加法同态性转化为 \(D(c_p\times c_q)\) 并交由服务器解密
Exploitation¶
- 首先获取 Flag 分别使用 \(g_p\) 和 \(g_q\) 加密的结果 \(c_p,c_q\)(由于加密时随机数 \(r\) 的存在,需要解密后才能判断)
- 解密 \(c_p\times c_q\) 即可获得 Flag
from Crypto.Util.number import long_to_bytes
import pwn
conn = pwn.remote("cha.hackpack.club", 10997)
cipher = dict()
for _ in range(5):
conn.sendafter('>>> ', 'e\n')
conn.sendafter('>>> ', 'f\n')
c = conn.recvline_contains('FLAG: ').decode()
c = c[c.find(': ') + 2:]
conn.sendafter('>>> ', 'd\n')
conn.sendafter('> ', c + '\n')
x = conn.recvline_contains('MSG: ').decode()
x = int(x[x.find(': ') + 2:])
cipher[x] = int(c)
if len(cipher) == 2: # got 2 different ciphertexts
break
cipher = cipher.values()
conn.sendafter('>>> ', 'd\n')
conn.sendafter('> ', str(cipher[0] * cipher[1]) + '\n')
m = conn.recvline_contains('MSG: ').decode()
m = int(m[m.find(': ') + 2:])
print(long_to_bytes(m))
# b'________flag{p41_41_41_1_d0nt_th1nk_th1s_1s_wh4t_p41ll13r_1nt3nd3d_3h}________'
Flag¶
flag{p41_41_41_1_d0nt_th1nk_th1s_1s_wh4t_p41ll13r_1nt3nd3d_3h}
Paillier¶
密钥生成¶
- 随机选择两个大素数 \(p,q\),保证 \(gcd(pq,(p-1)(q-1))=1\)
- 计算 \(n=pq\),\(\lambda=lcm(p-1,q-1)\)
- 随机选择一个小于 \(n^2\) 的正整数 \(g\),且存在 \(\mu=(L(g^{\lambda}\ mod\ n^2))^{-1}mod\, n\)
- 其中,\(L(x)=\frac{x-1}{n}\)(此处分式为除法)
- 公钥为 \((n,g)\),私钥为 \((\lambda,\mu)\)
简单变种¶
- 在 \(p,q\) 长度一致的情况下,可以快速生成密钥
- \(g=n+1,\lambda=\varphi(n),\mu=\varphi(n)^{-1}\)
加密¶
- 明文 \(m\) 是小于 \(n\) 的自然数,随机数 \(r\) 是小于 \(n\) 的正整数
- \(c=g^m\cdot r^n\, mod\ n^2\)
解密¶
- \(m=L(c^{\lambda}\ mod\ n^2)\cdot \mu\ mod\ n=\frac{L(c^\lambda\ mod\ n^2)}{L(g^\lambda\ mod\ n^2)}\ mod\ n\)
原理¶
-
根据二项式定理,\((1+n)^x=\sum^x_{k=0}{x\choose k}n^k=1+xn+{x\choose 2}n^2+\dotsb\),易得 \((1+n)^x\equiv 1+nx\, (mod\, n^2)\)
\(\because (p-1)|\lambda,(q-1)|\lambda\)
\(\therefore \lambda=k_1(p-1)=k_2(q-1)\)
由费马小定理可得 \(g^\lambda=g^{k_1(p-1)}\equiv 1(mod\,p),(g^\lambda-1)|p\) ,同理有 \((g^\lambda-1)|q\)
\(\therefore (g^\lambda-1)|pq\),可得 \(g^\lambda\equiv 1(mod\, n),g^\lambda(mod\, n^2)\equiv 1(mod\, n)\)
\(\therefore g^\lambda(mod\, n^2)=nk_g+1,k_g<n\)
\(\therefore L(g^\lambda(mod\, n^2))=k_g\)
\(\because c^{\lambda}=g^{m\lambda}\cdot r^{n\lambda}\, mod\, n^2\)
又 \(\because g^{m\lambda} = (nk_g+1)^m\equiv mnk_g+1(mod\, n^2),r^{n\lambda}\equiv n^2k_r+1\equiv 1(mod\, n^2)\)
\(\therefore L(c^{\lambda}\, mod\, n^2)=L(mnk_g+1)=mk_g\)
\(\therefore \frac{L(c^\lambda\, mod\, n^2)}{L(g^\lambda\, mod\, n^2)}=\frac{mk_g}{k_g}=m(mod\, n)\)
同态性¶
加法同态性¶
- \(\begin{equation} \begin{split} D(E(m_1,r_1)\cdot E(m_2,r_2)\, mod\, n^2)&=D(g^{m_1}\cdot r_1^n\cdot g^{m_2}\cdot r_2^n\, mod\, n^2)\\ &=D(g^{m_1+m_2}\cdot(r_1\cdot r_2)^n\, mod\, n^2)\\ &=m_1+m_2\, (mod\, n) \end{split} \end{equation}\)
- \(D(E(m_1,r_1)\cdot g^{m_2}\, mod\, n^2)=m_1+m_2\, (mod\, n)\)
乘法同态性¶
- \(D(E(m_1,r_1)^k\, mod\, n^2)=D(g^{km_1}\cdot (r_1^k)^n\, mod\, n^2)=km_1\,(mod\,n)\)
参考资料¶
- Paillier P. Public-key cryptosystems based on composite degree residuosity classes[C]//International conference on the theory and applications of cryptographic techniques. Springer, Berlin, Heidelberg, 1999: 223-238.
- Paillier cryptosystem - Wikipedia